Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 333
1.
Phytother Res ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38729776

White adipose tissue accumulation and inflammation contribute to obesity by inducing insulin resistance. Herein, we aimed to screen the synergistic components of the herbal pair Coptidis Rhizoma-Glycyrrhizae Radix et Rhizoma for the treatment of insulin resistance and explore the potential synergistic mechanisms. Enzyme-linked immunosorbent assay and quantitative PCR were used to detect expression levels of inflammatory genes in vitro and in vivo. Western blotting and immunohistochemistry were performed to detect protein levels of the insulin signaling pathway and macrophage markers. The effects on obesity-induced insulin resistance were verified using a diet-induced obesity (DIO) mouse model. Interactions between macrophage and adipocyte were assessed using a cellular supernatant transfer assay. Berberine (BBR) and isoliquiritigenin (ISL) alleviated mRNA levels and secretion of inflammatory genes in vitro and in vivo. Furthermore, BBR acted synergistically with ISL to ameliorate obesity and dyslipidemia in DIO mice. Meanwhile, the combination treatment significantly improved glucose intolerance and insulin resistance and decreased M1-macrophage accumulation and infiltration in the adipose tissue. Mechanistically, co-treatment with BBR and ISL upregulated the protein expression of the IRS1-PI3K-Akt insulin signaling pathway, enhanced glucose uptake in adipocyte, and suppressed the interaction between macrophage and adipocyte. BBR and ISL were identified as the synergistic components of the herbal pair Coptidis Rhizoma-Glycyrrhizae Radix et Rhizoma for treating insulin resistance. The synergistic combination of BBR with ISL can be a promising and effective strategy for improving obesity-induced adipose inflammation and insulin resistance.

2.
J Ethnopharmacol ; 329: 118158, 2024 Apr 13.
Article En | MEDLINE | ID: mdl-38614263

ETHNOPHARMACOLOGICAL RELEVANCE: Trichosanthis pericarpium (TP; Gualoupi, pericarps of Trichosanthes kirilowii Maxim) has been used in traditional Chinese medicine (TCM) to reduce heat, resolve phlegm, promote Qi, and clear chest congestion. It is also an essential herbal ingredient in the "Gualou Xiebai" formula first recorded by Zhang Zhongjing (from the Eastern Han Dynasty) in the famous TCM classic "Jin-Guì-Yào-Lüe" for treating chest impediments. According to its traditional description, Gualou Xiebai is indicated for symptoms of chest impediments, which correspond to coronary heart diseases (CHD). AIM OF THE STUDY: This study aimed to identify the antithrombotic compounds in Gualoupi for the treatment of CHD. MATERIALS AND METHODS: A CHD rat model was established with a combination of high-fat diet and isoproterenol hydrochloride (ISO) administration via subcutaneous multi-point injection in the back of the neck. This model was used to evaluate the antithrombotic effect of two mainstream cultivars of TP ("HaiShi GuaLou" and "WanLou") by analyzing the main components and their effects. Network pharmacology, molecular docking-based studies, and a zebrafish (Danio rerio) thrombosis model induced by phenylhydrazine was used to validate the antithrombosis components of TP. RESULTS: TP significantly reduced the body weight of the CHD rats, improved myocardial ischemia, and reduced collagen deposition and fibrosis around the infarcted tissue. It reduced thrombosis in a dose-dependent manner and significantly reduced inflammation and oxidative stress damage. Cynaroside, isoquercitrin, rutin, citrulline, and arginine were identified as candidate active TP compounds with antithrombotic effects. The key potential targets of TP in thrombosis treatment were initially identified by molecular docking-based analysis, which showed that the candidate active compounds have a strong binding affinity to the potential targets (protein kinase C alpha type [PKCα], protein kinase C beta type [PKCß], von Willebrand factor [vWF], and prostaglandin-endoperoxide synthase 1 [PTGS1], fibrinogen alpha [Fga], fibrinogen beta [Fgb], fibrinogen gamma [Fgg], coagulation factor II [F2], and coagulation factor VII [F7]). In addition, the candidate active compounds reduced thrombosis, improved oxidative stress damage, and down-regulated the expression of thrombosis-related genes (PKCα, PKCß, vWF, PTGS1, Fga, Fgb, Fgg, F2, and F7) in the zebrafish model. CONCLUSION: Cynaroside, isoquercitrin, rutin, citrulline, and arginine were identified as the active antithrombotic compounds of TP used to treat CHD. Mechanistically, the active compounds were found to be involved in oxidative stress injury, platelet activation pathway, and complement and coagulation cascade pathways.

3.
World J Clin Cases ; 12(12): 2092-2098, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38680263

BACKGROUND: This study aimed to explore the relationship between gene mutations and early embryonic development arrest and to provide more possibilities for the diagnosis and treatment of repeated implantation failure. CASE SUMMARY: Here, we collected and described the clinical data of a patient with early embryonic development stagnation after repeated in vitro fertilization attempts for primary infertility at the Department Reproductive Center of Zaozhuang Maternal and Child Healthcare Hospital. We also detected the whole-exon gene of the patient's spouse and parents, and conducted bioinformatics analysis to determine the pathogenesis of the gene. CONCLUSION: A novel mutant of the TUBB8 gene [c.602G>T(p.C201F)] was identified, and this mutant provided new data on the genotype-phenotype relationships of related diseases.

4.
Chem Biodivers ; : e202400507, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38606561

Three new C10 and C12 aliphatic δ-lactones (1-3), three new fatty acid methyl esters (4-6), and eight known compounds (7-14) were isolated from the marine Aureobasidium sp. LUO5. Their structures were established by detailed analyses of the NMR, HRESIMS, optical rotation, and ECD data. All isolates were tested for their inhibitory effects on nitric oxide production in LPS-induced BV-2 cells. Notably, compound 4 displayed the strongest inhibitory effect with the IC50 value of 120.3 nM.

5.
ISA Trans ; 2024 Mar 16.
Article En | MEDLINE | ID: mdl-38508951

The main problem addressed in this paper is the task-space bipartite formation tracking problem of uncertain heterogeneous Euler-Lagrange systems in predefined time. To solve this problem, an effective hierarchical predefined-time control algorithm is designed. This algorithm utilizes a non-singular sliding surface, allowing for the adjustment of the upper bound of the settling time as a flexible parameter. Key components of the proposed approach include an estimator for the leader's states and a controller tailored to the formation problem. To mitigate the effects of dynamic uncertainties in the system, the radial basis function neural network is integrated into the methodology. Finally, the effectiveness and validity of the proposed algorithm are demonstrated through numerical simulations, showcasing their practical applicability and efficacy.

6.
Micromachines (Basel) ; 15(3)2024 Mar 08.
Article En | MEDLINE | ID: mdl-38542614

This work proposes a microwave resonator built from gallium arsenide using integrated passive device (IPD) technology. It consists of a three-layered interlaced spiral structure with airbridges and inner interdigital structures. For integrated systems, IPD technology demonstrated outstanding performance, robustness, and a tiny size at a low cost. The airbridges were made more compact, with overall dimensions of 1590 × 800 µm2 (0.038 × 0.019 λg2). The designed microwave resonator operated at 1.99 GHz with a return loss of 39 dB, an insertion loss of 0.07 dB, and a quality factor of 1.15. Additionally, an experiment was conducted on the properties of the airbridge and how they affected resistance, inductance, and S-parameters in the construction of the resonator. To investigate the impact of airbridges on the structure, E- and H-field distributions of the resonator were simulated. Furthermore, its use in sensing applications was explored. Various concentrations of glucose solutions were used in the experiment. The proposed device featured a minimum detectable concentration of 0.2 mg/mL; high sensitivity, namely, 14.58 MHz/mg·mL-1, with a linear response; and a short response time. Thus, this work proposes a structure that exhibits potential in integrated systems and real-time sensing systems with high sensitivity.

7.
J Ethnopharmacol ; 325: 117869, 2024 May 10.
Article En | MEDLINE | ID: mdl-38342153

ETHNOPHARMACOLOGICAL RELEVANCE: Coronary heart disease (CHD) is a chronic disease that seriously threatens people's health and even their lives. Currently, there is no ideal drug without side effects for the treatment of CHD. Trichosanthis Pericarpium (TP) has been used for several years in the treatment of diseases associated with CHD. However, there is still a need for systematic research to unravel the pharmacodynamic substances and possible mechanism of TP in the treatment of coronary heart. AIM OF THE STUDY: The purpose of current study was to explore the pharmacodynamic substances and potential mechanisms of TP in the treatment of CHD via integrating network pharmacology with plasma pharmacochemistry and experimental validation. MATERIALS AND METHODS: The effect of TP intervention in CHD was firstly assessed on high-fat diet combined with isoprenaline-induced CHD rats and H2O2-induced H9c2 cells, respectively. Then, the LC-MS was utilized to identify the absorbed components of TP in the plasma of CHD rats, and this was used to develop a network pharmacology prediction to obtain the possible active components and mechanisms of action. Molecular docking and immunohistochemistry were used to explore the interaction between TP and key targets. Subsequently, the efficacy of the active ingredients was investigated by in vitro cellular experiments, and their metabolic pathways in CHD rats were further analyzed. RESULTS: The effects of TP on amelioration of CHD were verified by in vivo and in vitro experiments. Plasma pharmacochemistry and network pharmacology screened six active components in plasma including apigenin, phenylalanine, quercetin, linoleic acid, luteolin, and tangeretin. The interaction of these compounds with potential key targets AKT1, IL-1ß, IL-6, TNF-α and VEGFA were preliminarily verified by molecular docking. And immunohistochemical results showed that TP reduced the expression of AKT1, IL-1ß, IL-6, TNF-α and VEGFA in CHD rat hearts. Then cellular experiments confirmed that apigenin, phenylalanine, quercetin, linoleic acid, luteolin, and tangeretin were able to reduce the ROS level in H2O2-induced HUVEC cells and promote the migration and tubule formation of HUVEC cells, indicating the pharmacodynamic effects of the active components. Meanwhile, the metabolites of TP in CHD rats suggested that the pharmacological effects of TP might be the result of the combined effects of the active ingredients and their metabolites. CONCLUSION: Our study found that TP intervention in CHD is characterized by multi-component and multi-target regulation. Apigenin, phenylalanine, linoleic acid, quercetin, luteolin, and tangeretin are the main active components of TP. TP could reduce inflammatory response and endothelial damage by regulating AKT1, IL-1ß, IL-6, TNF-α and VEGFA, reduce ROS level to alleviate the oxidative stress situation and improve heart disease by promoting angiogenesis to regulate endothelial function. This study also provides an experimental and scientific basis for the clinical application and rational development of TP.


Coronary Disease , Drugs, Chinese Herbal , Humans , Animals , Rats , Apigenin , Luteolin/pharmacology , Luteolin/therapeutic use , Hydrogen Peroxide , Interleukin-6 , Linoleic Acid , Molecular Docking Simulation , Network Pharmacology , Quercetin , Reactive Oxygen Species , Tumor Necrosis Factor-alpha , Coronary Disease/drug therapy , Interleukin-1beta , Phenylalanine
8.
Environ Res ; 251(Pt 1): 118579, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38423497

Halogenated organic contaminants, such as chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs), are some of the most important emerging environmental pollutants. However, empirical data on Cl/Br-PAHs in estuarine and marine ecosystems are limited, rendering assessments of Cl/Br-PAH contamination in estuarine and offshore environments uncertain. Here the occurrence, sources, and ecological risks of 7 Cl-PAHs and 18 Br-PAHs were determined in surface sediments of the Yangtze River Estuary (YRE), a highly urbanized and industrialized area, and its adjacent marine area. The concentrations of Cl-PAHs ranged from 4.50 to 18.38 ng g-1 (average 7.19 ng g-1), while those of Br-PAHs ranged from 4.80 to 61.18 ng g-1 (average 14.11 ng g-1). The dominant Cl-PAH and Br-PAH in surface sediment were 9-chlorofluorene (17.79%) and 9-bromofluorene (58.49%), respectively. The distributions and compositions of Cl/Br-PAHs in the surface sediments varied considerably due to complex hydrodynamic and depositional conditions in the YRE and its adjacent marine area, as well as differences in physicochemical properties of different Cl/Br-PAHs. Positive matrix factorization revealed that the primary sources of Cl/Br-PAHs in the study area were e-waste dismantling (33.6%), waste incineration (23.2%), and metal smelting (11.0%). According to the risk quotient, the Cl/Br-PAHs in sediments posed no toxic risk to aquatic organisms.

9.
Chem Commun (Camb) ; 60(16): 2204-2207, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38304957

Cu(II) supramolecular assemblies [Cu2(tipe)2(H2O)2](NO3)4·2.5H2O (CuN4) and [Cu2Cl4(tipe)(CH3CN)]·H2O (CuN2Cl2) (tipe = 1,1,2,2-tetrakis(4-(imidazole-1-yl)phenyl)ethene) were synthesized and utilized for photocatalytic CO2 reduction. CuN4 exhibits CO production of up to 891 µmol gcat-1 with a selectivity of 79.9%, while CuN2Cl2 gives low CO production of 206 µmol gcat-1 but with a high selectivity of >99.9% in 5 h. The experimental and DFT calculation results indicate that the coordination environment and non-covalent interactions within the assemblies have a great impact on the photocatalytic CO2 reduction behavior. This work provides useful insights on Cu(II) assembly catalyzed CO2 photoreduction.

10.
Plant Phenomics ; 6: 0131, 2024.
Article En | MEDLINE | ID: mdl-38188223

Tree growth is the consequence of developmental interactions between above- and below-ground compartments. However, a comprehensive view of the genetic architecture of growth as a cohesive whole is poorly understood. We propose a systems biology approach for mapping growth trajectories in genome-wide association studies viewing growth as a complex (phenotypic) system in which above- and below-ground components (or traits) interact with each other to mediate systems behavior. We further assume that trait-trait interactions are controlled by a genetic system composed of many different interactive genes and integrate the Lotka-Volterra predator-prey model to dissect phenotypic and genetic systems into pleiotropic and epistatic interaction components by which the detailed genetic mechanism of above- and below-ground co-growth can be charted. We apply the approach to analyze linkage mapping data of Populus euphratica, which is the only tree species that can grow in the desert, and characterize several loci that govern how above- and below-ground growth is cooperated or competed over development. We reconstruct multilayer and multiplex genetic interactome networks for the developmental trajectories of each trait and their developmental covariation. Many significant loci and epistatic effects detected can be annotated to candidate genes for growth and developmental processes. The results from our model may potentially be useful for marker-assisted selection and genetic editing in applied tree breeding programs. The model provides a general tool to characterize a complete picture of pleiotropic and epistatic genetic architecture in growth traits in forest trees and any other organisms.

11.
BMC Genomics ; 25(1): 81, 2024 Jan 20.
Article En | MEDLINE | ID: mdl-38243219

BACKGROUND: The expression of biological traits is modulated by genetics as well as the environment, and the level of influence exerted by the latter may vary across characteristics. Photosynthetic traits in plants are complex quantitative traits that are regulated by both endogenous genetic factors and external environmental factors such as light intensity and CO2 concentration. The specific processes impacted occur dynamically and continuously as the growth of plants changes. Although studies have been conducted to explore the genetic regulatory mechanisms of individual photosynthetic traits or to evaluate the effects of certain environmental variables on photosynthetic traits, the systematic impact of environmental variables on the dynamic process of integrated plant growth and development has not been fully elucidated. RESULTS: In this paper, we proposed a research framework to investigate the genetic mechanism of high-dimensional complex photosynthetic traits in response to the light environment at the genome level. We established a set of high-dimensional equations incorporating environmental regulators to integrate functional mapping and dynamic screening of gene‒environment complex systems to elucidate the process and pattern of intrinsic genetic regulatory mechanisms of three types of photosynthetic phenotypes of Populus simonii that varied with light intensity. Furthermore, a network structure was established to elucidate the crosstalk among significant QTLs that regulate photosynthetic phenotypic systems. Additionally, the detection of key QTLs governing the response of multiple phenotypes to the light environment, coupled with the intrinsic differences in genotype expression, provides valuable insights into the regulatory mechanisms that drive the transition of photosynthetic activity and photoprotection in the face of varying light intensity gradients. CONCLUSIONS: This paper offers a comprehensive approach to unraveling the genetic architecture of multidimensional variations in photosynthetic phenotypes, considering the combined impact of integrated environmental factors from multiple perspectives.


Photosynthesis , Populus , Photosynthesis/genetics , Light , Phenotype , Populus/genetics , Genetic Variation
12.
Future Med Chem ; 16(4): 369-388, 2024 Feb.
Article En | MEDLINE | ID: mdl-38288571

Cyclin-dependent kinases (CDKs) play an important role in the regulation of cell proliferation, and many CDK inhibitors were developed. However, pan-CDK inhibitors failed to be approved due to intolerant toxicity or low efficacy and the use of selective CDK4/6 inhibitors is limited by resistance. Protein degraders have the potential to increase selectivity, efficacy and overcome resistance, which provides a novel strategy for regulating CDKs. In this review, we summarized the function of CDKs in regulating the cell cycle and transcription, and introduced the representative CDK inhibitors. Then we made a detailed introduction about four types of CDKs degraders, including their action mechanisms, research status and application prospects, which could help the development of novel CDKs degraders.


Antineoplastic Agents , Neoplasms , Humans , Cyclin-Dependent Kinases , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cell Cycle Checkpoints , Cell Cycle , Neoplasms/drug therapy , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Cyclin-Dependent Kinase 2
13.
Eur J Med Chem ; 264: 116025, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38086189

Hepatocellular carcinoma (HCC) is a prevalent and lethal malignancy worldwide. The MET gene, which encodes receptor tyrosine kinase c-Met, is aberrantly activated in various solid tumors, including non-small cell lung cancer and HCC. In this study, we identified a novel c-Met inhibitor 54 by virtual screening and structural optimization. Compound 54 showed potent c-Met inhibition with an IC50 value of 0.45 ± 0.06 nM. It also exhibited high selectivity among 370 kinases and potent anti-proliferative activity against MET-amplified HCC cells. Moreover, compound 54 displayed significant anti-tumor efficacy in vivo, making it a potential candidate for HCC treatment in future studies.


Antineoplastic Agents , Carcinoma, Hepatocellular , Carcinoma, Non-Small-Cell Lung , Liver Neoplasms , Lung Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Proto-Oncogene Proteins c-met , Cell Line, Tumor , Protein Kinase Inhibitors/chemistry , Antineoplastic Agents/chemistry , Cell Proliferation
14.
Pest Manag Sci ; 80(2): 366-375, 2024 Feb.
Article En | MEDLINE | ID: mdl-37694307

BACKGROUND: Ticks are disease vectors that are a matter of worldwide concern. Antibiotic treatments have been used to explore the interactions between ticks and their symbiotic microorganisms. In addition to altering the host microbial community, antibiotics can have toxic effects on the host. RESULTS: In the tick Haemaphysalis longicornis, engorged females showed reproductive disruption after microinjection of tetracycline. Multi-omics approaches were implemented to unravel the mechanisms of tick reproductive inhibition in this study. There were no significant changes in bacterial density in the whole ticks on Day (D)2 or D4 after tetracycline treatment, whereas the bacterial microbial community was significantly altered, especially on D4. The relative abundances of the bacteria Staphylococcus, Bacillus and Pseudomonas decreased after tetracycline treatment, whereas the relative abundances of Coxiella and Rhodococcus increased. Ovarian transcriptional analysis revealed a cumulative effect of tetracycline treatment, as there was a significant increase in the number of differentially expressed genes with treatment time and a higher number of downregulated genes. The tick physiological pathways including lysosome, extracellular matrix (ECM)-receptor interaction, biosynthesis of ubiquinone and other terpenoids-quinones, insect hormone biosynthesis, and focal adhesion were significantly inhibited after 4 days of tetracycline treatment. Metabolite levels were altered after tetracycline treatment and the differences increased with treatment time. The differential metabolites were involved in a variety of physiological pathways; the downregulated metabolites were significantly enriched in the nicotinate and nicotinamide metabolism, galactose metabolism, and ether lipid metabolism pathways. CONCLUSIONS: These findings indicate that tetracycline inhibits tick reproduction through the regulation of tick bacterial communities, gene expression and metabolic levels. The results may provide new strategies for tick control. © 2023 Society of Chemical Industry.


Microbiota , Ticks , Animals , Female , Ticks/genetics , Ticks/microbiology , Phylogeny , Microbiota/physiology , Bacteria/genetics , Anti-Bacterial Agents/pharmacology , Tetracycline/pharmacology , Reproduction , Gene Expression
15.
World Neurosurg ; 181: e655-e677, 2024 Jan.
Article En | MEDLINE | ID: mdl-37898266

OBJECTIVE: A meta-analysis of randomized controlled trials was conducted to assess efficacy and safety of bilateral ultrasound-guided erector spinae plane block (ESPB) for postoperative analgesia in patients receiving spine surgery. METHODS: PubMed, Embase, and CENTRAL databases were searched by 2 reviewers independently to identify randomized controlled trials evaluating the efficacy of ultrasound-guided ESPB for pain management in patients undergoing spine surgery. For meta-analysis, mean difference (MD) and 95% confidence interval (CI) were selected for continuous data, and risk ratio (RR) and 95% CI were selected for dichotomous variables. RESULTS: A total of 25 randomized controlled trials including 1917 patients (873 in ESPB group and 874 in control group) were eligible for inclusion. At rest, ESPB was associated with significantly lower pain intensity at 0, 2, 4, 6, 8, 12, 24, and 48 hours compared with the control group. During movement, ESPB was associated with significantly lower pain intensity at 0, 4, 6, 8, 12, 24, and 48 hours compared with the control group. Significantly reduced opioid consumption (MD = -6.29, 95% CI [-8.16, 4.41], P < 0.001), prolonged time for first rescue analgesia (MD = 7.51, 95% CI [3.47, 11.54], P < 0.001), fewer patients needing rescue analgesia (RR = 0.34, 95% CI [0.28, 0.43], P < 0.0001), improved patient satisfaction (MD = 1.34, 95% CI [0.88, 1.80], P < 0.001), and shorter length of hospital stay (MD = -0.38, [95% CI -0.50, -0.26], P < 0.001) were demonstrated after use of ESPB. Additionally, ESPB was associated with decreased risks of any adverse event (RR = 0.51, 95% CI [0.43, 0.60], P < 0.001) and postoperative nausea and vomiting events (RR = 0.39, 95% CI [0.31, 0.49], P < 0.001). CONCLUSIONS: Ultrasound-guided ESPB is an effective adjunctive technique with good tolerability for multimodal analgesia in management of pain in patients undergoing spine surgery.


Analgesia , Nerve Block , Humans , Pain , Pain, Postoperative/drug therapy , Postoperative Nausea and Vomiting , Randomized Controlled Trials as Topic , Ultrasonography, Interventional
16.
Stem Cells ; 42(4): 360-373, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38153253

Recent investigations have shown that the necroptosis of tissue cells in joints is important in the development of osteoarthritis (OA). This study aimed to investigate the potential effects of exogenous skeletal stem cells (SSCs) on the necroptosis of subchondral osteoblasts in OA. Human SSCs and subchondral osteoblasts isolated from human tibia plateaus were used for Western blotting, real-time PCR, RNA sequencing, gene editing, and necroptosis detection assays. In addition, the rat anterior cruciate ligament transection OA model was used to evaluate the effects of SSCs on osteoblast necroptosis in vivo. The micro-CT and pathological data showed that intra-articular injections of SSCs significantly improved the microarchitecture of subchondral trabecular bones in OA rats. Additionally, SSCs inhibited the necroptosis of subchondral osteoblasts in OA rats and necroptotic cell models. The results of bulk RNA sequencing of SSCs stimulated or not by tumor necrosis factor α suggested a correlation of SSCs-derived tumor necrosis factor α-induced protein 3 (TNFAIP3) and cell necroptosis. Furthermore, TNFAIP3-derived from SSCs contributed to the inhibition of the subchondral osteoblast necroptosis in vivo and in vitro. Moreover, the intra-articular injections of TNFAIP3-overexpressing SSCs further improved the subchondral trabecular bone remodeling of OA rats. Thus, we report that TNFAIP3 from SSCs contributed to the suppression of the subchondral osteoblast necroptosis, which suggests that necroptotic subchondral osteoblasts in joints may be possible targets to treat OA by stem cell therapy.


Osteoarthritis , Tumor Necrosis Factor alpha-Induced Protein 3 , Animals , Humans , Rats , Necroptosis , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/therapy , Osteoblasts/metabolism , Osteoblasts/pathology , Stem Cells/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/pharmacology
17.
Cancer Biol Ther ; 25(1): 2284849, 2024 12 31.
Article En | MEDLINE | ID: mdl-38051132

OBJECTIVE: This study aims to investigate the effect of red ginseng polysaccharide (RGP) on gastric cancer (GC) development and explore its mechanism. METHODS: GC cell lines AGS were treated with varying concentrations of RGP (50, 100, and 200 µg/mL). AGS cells treated with 200 µg/mL RGP were transfected with aquaporin 3 (AQP3) overexpression vector. Cell proliferation, viability, and apoptosis were evaluated by MTT, colony formation assay, and flow cytometry, respectively. Real-time quantitative reverse transcription PCR (qRT-PCR) was used to detect the expression of AQP3. The levels of Fe2+, malondialdehyde, and lactate dehydrogenase were measured using their respective detection kits, and the reactive oxygen species levels was determined by probe 2',7'-dichlorodihydrofluorescein diacetate. The expression of ferroptosis-related protein and PI3K/Akt pathway-related protein were assessed by western blot. In vivo experiments in nude mice were performed and the mice were divided into four groups (n = 5/group) which gavage administrated with 150 mg/kg normal saline, and 75, 150, 300 mg/kg RGP, respectively. Their tumor weight and volume were recorded. RESULTS: RGP treatment effectively inhibited the proliferation and viability of AGS cells in a dosage-dependent manner and induced apoptosis. It induced ferroptosis in AGS cells, as well as inhibiting the expression of PI3K/Akt-related proteins. AQP3 overexpression could reversed the effect of RGP treatment on ferroptosis. Confirmatory in vivo experiments showed that RGP could reduce the growth of implanted tumor, with increased RGP concentration resulting in greater tumor inhibitory effects. CONCLUSION: RGP might have therapeutic potential against GC, effectively inhibiting the proliferation and viability of AGS cells.


Ferroptosis , Panax , Stomach Neoplasms , Animals , Mice , Stomach Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Phosphatidylinositol 3-Kinases/metabolism , Down-Regulation , Aquaporin 3/genetics , Aquaporin 3/metabolism , Mice, Nude , Cell Proliferation , Panax/metabolism , Cell Line, Tumor
18.
Food Chem ; 440: 138240, 2024 May 15.
Article En | MEDLINE | ID: mdl-38150907

As ubiquitous components among fruits, polyphenols, including flavonoids and phenolic acids, are somewhat embarrassed on their health benefits but low bioavailability, triggering a hotspot on their interaction with microbiota. Due to its structural characteristics similar to flavonoids and phenolic acids, dihydrochalcone phlorizin (PHZ) was selected as a reference, to illustrate its step-by-step metabolic fate associated with microbiota. The results confirmed that the metabolic flux of PHZ starts with its conversion to phloretin (PHT), sequentially followed by the formation of 3-(4-hydroxyphenyl) propionic acid (PHA), and 4-hydroxyphenylacetic acid (4-HPAA). Catabolic characteristics was comparatively elucidated by introducing apparent and potential kinetics. Besides, coupling catabolic processes with microbial changes suggested several potential bacteria involving in PHZ metabolism, as well as those regulated by PHZ and its metabolites. In particular, seven strains from Lactobacillus were selectively isolated and confirmed to be essential for deglycosylation of PHZ, implying a potential synergistic effect between PHZ and Lactobacillus.


Gastrointestinal Microbiome , Hydroxybenzoates , Phlorhizin , Prebiotics , Polyphenols/metabolism , Flavonoids/metabolism
19.
Math Biosci Eng ; 20(9): 16678-16704, 2023 Aug 21.
Article En | MEDLINE | ID: mdl-37920029

Quick response (QR) codes have become increasingly popular as a medium for quickly and easily accessing information through mobile devices. However, the open-source nature of QR code encoding poses a risk of information leakage and potential attacks, especially with the growing use of QR codes in financial services and authentication applications. To mitigate the risk of information leakage due to open-source QR code encoding, this paper proposes a two-level QR code scheme based on a region matrix image secret sharing algorithm. In this scheme, the first-level public information can be directly obtained by scanning with any standard QR code scanner, while the two-level secret information can only be accessed by overlaying the shared images. To enhance the robustness of joint secret information recovery using shared images, this article designs a progressive image secret sharing algorithm based on region matrices. This algorithm meticulously processes high-priority share regions and generates multiple substitute shares. In the event of attacks on key shares, substitute shares can be employed to recover the secret information. For an increased payload capacity of each QR code, an adaptive pixel depth adjustment algorithm is devised. This algorithm ensures that the recovery of two-level secret information maintains high clarity, while not affecting the scanning functionality of each shared QR code. Experimental results validate the feasibility of this scheme, which simplifies the construction matrix, reduces matrix redundancy, and exhibits priority partitioning and higher robustness. Furthermore, QR codes embedding secret shares can safeguard the two-level information, and the recovered images exhibit exceptional clarity.

20.
J Med Chem ; 66(23): 16235-16256, 2023 12 14.
Article En | MEDLINE | ID: mdl-38033250

Prostate cancer (PCa) seriously threatens male health, and targeting dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) has been verified to reduce PCa burden, while the research progress on the DYRK2 inhibitors was relatively slow. In this work, we discovered DYRK2 inhibitor 12 (IC50 = 9681 nM) through virtual screening. Subsequently, we performed systematic structural optimization to obtain 54 (IC50 = 14 nM). Compound 54 exhibited high selectivity among 215 kinases and significantly suppressed the proliferation and metastasis of PCa cells in vitro. Moreover, compound 54 displayed high safety, favorable bioavailability, and potent tumor growth inhibitory activity in vivo, which could be used as a potential candidate in the discovery of novel anti-PCa drugs.


Prostatic Neoplasms , Protein Serine-Threonine Kinases , Male , Humans , Protein-Tyrosine Kinases , Prostatic Neoplasms/drug therapy
...